Indian Statistical Institute, Bangalore

B.Math (Hons.) III Year, First Semester Semestral Examination Complex Analysis 2 December 2011 Ins

Time: $3\frac{1}{2}$ hours

Instructor: B.Bagchi Maximum marks: 100

Note: Each Question carries 20 Marks.

1. (a) State and prove Schwarz's Lemma.

(b) Let U be a subdomain of the unit disc \mathbb{D} ; $0 \in U$. Suppose $f : U \to \mathbb{D}$ is a biholomorphic map such that f(0) = 0. Then show that $|f'(0)| \ge 1$ and $|f(z)| \ge |z|$ for all $z \in U$.

(c) If Ω is a simply connected proper subdomain of \mathbb{C} then show that there is a one-one holomorphic function from Ω into \mathbb{D} .

(No! you may not assume Riemann mapping theorem!)

2. (a) Let f be an entire function such that $\lim_{z\to\infty} f(z) = \infty$. Then show that f is a polynomial.

(b) If f is an one-one entire function then show that f satisfies the hypothesis of part (a). Hence deduce that $f(z) \equiv az + b$ for some $a \in \mathbb{C}^*$, $b \in \mathbb{C}$.

3. (a) If $f : \Omega \to \mathbb{C}$ is a one-one holomorphic function then show that $f'(z) \neq 0$ for all $z \in \Omega$.

(b) if $f: \Omega \to \mathbb{C}$ is a holomorphic function such that $f'(z) \neq 0$ for all $z \in \Omega$ then show that f is locally one-one.

4. Let Ω be a bounded planar domain and let $f:\overline{\Omega} \to \mathbb{C}$ be a continuous function which is non-constant and holomorphic on Ω .

(a) Show that $\partial f(\Omega) \subseteq f(\partial \Omega)$.

(b) If U is a planar domain such that $U \cap f(\Omega) \neq \varphi$ but $U \cap f(\partial \Omega) = \varphi$ then show that $U \subseteq f(\Omega)$.

5. Let Ω be a simply connected domain and let $\mathcal{F} = \{f \in H(\Omega) : f(z) \neq \pm 1$ for all $z \in \Omega\}$.

(a) Show that, for each $f \in \mathcal{F}$, there is a $g \in H(\Omega)$ such that $f(z) \equiv cos(\pi g(z))$.

(b) Hence show that there is an absolute constant $r_o > 0$ such that for any $f \in \mathcal{F}$, $g(\Omega)$ does not contain any disc of radius r_o . Find an explicit value of r_o .